f(x)=x4−12x3+17x2−9x+7
f(x+3)=(x+3)4−12(x+3)3+17(x+3)2−9(x+3)+7
=(x4+(41)⋅x3⋅3+(42)⋅x2⋅32+(43)⋅x⋅33+(44)⋅x⋅34)
−12(x3+(31)⋅x2⋅3+(32)⋅x⋅32+(33)⋅33)
+17(x2+(21)⋅x⋅3+(22)⋅32)−9(x+3)+7
=(x4+12x3+54x2+108x+81)−12(x3+9x2+27x+27)+17(x2+6x+9)−9(x+3)+7
=x4−37x2−123x+110