wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=x4+ax3+bx2+cx+d, is a polynomial such that f(1)=10,f(2)=20,f(3)=30, then the value of f(12)+f(−8)10 is equal to

A
2018
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1984
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
60
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
600
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1984
We have,
f(1)=10f(1)10=0f(2)=20f(2)20=0f(2)10×2=0f(3)=30f(3)30=0f(3)10×3=0g(a)=f(x)10x=0g(1)=f(1)10=0g(2)=f(2)20=0g(3)=f(3)30=0g(1)=g(2)=g(3)=0(x1)(x2)(x3)dividesg(x)g(x)=f(x)10x=(xt)(x1)(x2)(x3)f(x)=10x(xt)(x1)(x2)(x3)forx=12(121)(122)(123)=11×10×9=990forx=8(81)(82)(83)=9×10×11=990f(12)+f(8)10=10(x1+x2)+990(x1t)+(990)(x2t)10let,x1=12x2=8f(+12)+f(8)10=10(128)+990(12t)990(8t)10=40+990[12t+8+t]10=40+990×2010=1984.

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Value of a Polynomial
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon