If f(x)=x1x−1 for x≠1 and f is continuous at x=1 then f(1)=
f(1)=RHLatx=1=limh→0f(1+h)=limh→0(1+h)(11+h−1)=limh→0(1+h)(1h)=elimh→0(1h)(1+h−1)=e