Iff(x)=x+1x, prove that [f(x)]3=f(x)3+3f(1x). Also determine the value of [f(2)]3.
We have f(x)=x+1x
RHS=f(x3)+3f(1x)=x3+1x3+3(1x+x)
=x3+3x+3x+1x3
=(x+1x)3 [∵(a+b)3=a3+b3+3a2b+bab2]
=[f(x)]3=RHS
∴[f(x)]3+3f(1x) Hence proved...(i)
put x=2 in Eq.(i)we get
[f(2)]3=f(2)3+3f(12) (i)
Now,f(23)=f(8)=8+18=658 and f(12)=12+11=12+2=52
from E.g (ii), we get
[f(2)]3=658+3×52=658+152=65+608=1252