If f(x)=xsin(1x),x≠0, then limx→0f(x)=
The correct option is
B
0
limx→0f(x)=limxsin1x,x≠0
LHL at x = 0 :
=limx→0f(x)=limh→0f(0−h)
⇒lim(−h)sin(10−h)
=0 as multiplication of 0 and a finite quantity is always zero.
RHL at x=0:
⇒limh→0+f(x)=limh→0f(0+h)
⇒limh→0hsin(1h)=0 as multiplication of 0 and a finite quantity is always zero
⇒limh→0−f(x) =limx→0+f(x)
Therefore, limx→0f(x)=0