The correct option is D f is differentiable everywhere except at x=0
f(x)=|x|+|sinx|, x∈(−π2,π2)
f(x)=⎧⎪⎨⎪⎩−x−sinx ,−π2<x<0x+sinx ,0≤x<π2
For continuity at x=0:
L.H.L.=limx→0−−(x+sinx)
=limh→0−(−h−sinh)
=0
R.H.L.=limx→0+(x+sinx)
=limh→0(h+sinh)
=0
⇒L.H.L=R.H.L.=f(0)=0
∴f is continuous at x=0
Now, L.H.D.=f′(0−)
=limh→0f(0−h)−f(0)−h
=limh→0h+sinh−h
=limh→0−(1+sinhh)=−2
R.H.D.=f′(0+)
=limh→0f(0+h)−f(0)h
=limh→0(1+sinhh)=2
⇒L.H.D.≠R.H.D.
So, f is not differentiable at x=0.