If f(x)=x+∫10(xy2+x2y) f(y)dy, and f(x)=Ax2+Bx119 then [A+B100] = (where [.] is G.I.F)
f(x)=x+x∫10 y2f(y)dy+x2∫10yf(y)dy
=x[1+∫10y2f(y)dy]+x2[∫10yf(y)dy]
f(x) is quadratic expression f(x)=ax+bx2 or f(y)=ay+by2 . . . (1)
a=1+∫10 y2f(y)dy
=1+∫10 y2(ay+by2)dy
=1+[ay44+by55]10 a=1+(a4+b5) . . . (2)
20a = 20 + 5a + 4b 15a - 4b = 20
b=∫10 yf(y)dy=∫10y(ay+by2)dy
=(ay33+by44)10⇒b=a3+b4
12b = 4a + 3b 9b - 4a = 0 . . . .(3) from (2) and (3)
a=180119 and b=80119
f(x)=180119x+80119x2=Ax2+Bx119
A = 80 B = 180
A + B = 260
[A+B100]=2