wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=x+10(xy2+x2y) f(y)dy, and f(x)=Ax2+Bx119 then [A+B100] = (where [.] is G.I.F) ___

Open in App
Solution

f(x)=x+x10 y2f(y)dy+x210yf(y)dy

=x[1+10y2f(y)dy]+x2[10yf(y)dy]

f(x) is quadratic expression f(x)=ax+bx2 or f(y)=ay+by2 . . . (1)

a=1+10 y2f(y)dy

=1+10 y2(ay+by2)dy

=1+[ay44+by55]10 a=1+(a4+b5) . . . (2)

20a = 20 + 5a + 4b 15a - 4b = 20

b=10 yf(y)dy=10y(ay+by2)dy

=(ay33+by44)10b=a3+b4

12b = 4a + 3b 9b - 4a = 0 . . . .(3) from (2) and (3)

a=180119 and b=80119

f(x)=180119x+80119x2=Ax2+Bx119

A = 80 B = 180

A + B = 260

[A+B100]=2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Quadratic Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon