If f(x)=x|x2−3x|e|x−3|+[3+sgn(x2−1−5x)4+x2]+{13+[x2−2x|x|+1]} is non differentiable at x=x1,x2,x3.....xn then ∑ni=1xi equals
( where [.],{.},sgn(.), denotes greatest integer function, fractional part function and signum function respectively)
A
\N
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B 3 sgn(x2−1−5x)=0,−1,+1 ⇒3+sgn(x2−1−5x)=3,2,4 ∴[3+sgn(x2−1−5x)4+x2]=0and{13+[x2−2x|x|+1]}=13 ∴f(x)=x|x2−3x|e|x−3|+13
So we have to check differentiability of the function f(x) at x=0and3.
At x=0
For LHD f(x)=(x3−3x2)e3−x∴f′(x)=(x3−3x2)e3−x(−1)+e3−x(3x2−6x)f′(0)=0
For RHD f(x)=(−x3+3x2)e3−x∴f′(x)=(−x3+3x2)e3−x(−1)+e3−x(−3x2+6x)f′(0)=0
At x=3
For LHD f(x)=(−x3+3x2)e3−x∴f′(x)=(−x3+3x2)e3−x(−1)+e3−x(−3x2+6x)f′(0)=−9
For RHD f(x)=(x3−3x2)ex−3∴f′(x)=(x3−3x2)ex−3+ex−3(3x2−6x)f′(0)=9 f(x) is differentiable at x=0 but not differentiable at x=3.∴∑xi=3