If f(x)=x−[x], for every real number x, where [x] is integral part of x. Then, ∫1−1f(x)dx is
I=∫1−1f(x)dx=∫1−1x−[x]dx=∫1−1xdx−∫1−1[x]dxI=[x22]1−1−∫1−1[x]dxI=[122−(−1)22]−∫1−1[x]dxI=0−∫1−1[x]dxI=∫0−1[x]dx+∫10[x]dx
The value of [x],
[x]=0x∈(0,1)[x]=−1x∈(−1,0)
∴I=−∫0−1(−1)dx−∫10(0)dxI=−[−x]0−1−0I=−[(0)−(−(−1))]=1.