The correct option is A (−12,0)
f′(x)=|x|−{x}=|x|−(x−[x])=|x|−x+[x]
For x∈(−12,0),
f′(x)=−x−x−1=−2x−1
As,
−12<x<0
or 0<−2x<1
or −1<−2x−1<0
or f′(x)<0,
f(x) decreases in (−12,0)
Similarly we can check for other given options say for x∈(−12,2),
f′(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(−x)−x−1,−12<x<0x−x+0,0≤x<1x−x+1,1≤x<2...
Here, f(x) decreases only in (−12,0), otherwise f(x) in other intervals is constant.