wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

Open in App
Solution

Given:
f (x) = x2 – 3x + 4
Therefore,
f (2x + 1) = (2x + 1)2 – 3(2x + 1) + 4
= 4x2 + 1 + 4x – 6x – 3 + 4
= 4x2 – 2x + 2
Now,
f (x) = f (2x + 1)
⇒ x2 – 3x + 4 = 4x2 – 2x + 2
⇒ 4x2 – x2 – 2x + 3x + 2 – 4 = 0
⇒ 3x2 + x – 2 = 0
⇒ 3x2 + 3x – 2x – 2 = 0
⇒ 3x(x + 1) – 2(x +1) = 0
⇒ (3x – 2)(x +1) = 0
⇒ (x + 1) = 0 or ( 3x – 2) = 0
x=-1 or x=23
Hence, x=-1,23.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Zeroes of a Polynomial concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon