If f(x−y),f(x)f(y) and f(x+y) are in A.P. for all x,y∈R and f(0)≠0, then
A
f(4)=f(−4)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f(2)+f(−2)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f′(4)+f′(−4)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f′(2)=f′(−2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Af(4)=f(−4) Cf′(4)+f′(−4)=0 f(x−y),f(x)f(y) and f(x+y) are in A.P. f(x−y)+f(x+y)=2f(x)f(y) Putting x=0=y ⇒f(0)+f(0)=2f(0)f(0)⇒f(0)=1[∵f(0)≠0] Putting x=0,y=x f(x)+f(−x)=2f(0)f(x)⇒f(−x)=f(x)⋯(1)f(2)=f(−2);f(4)=f(−4) Differentiating the equation (1) w.r.t. x f′(x)=−f′(−x)⇒f′(x)+f′(−x)=0f′(4)+f′(−4)=0;f′(2)+f′(−2)=0