The correct option is A zero
f(x, y, z) = (x2+y2+z2)−12
∂f∂x=−12(x2+y2+z2)−3/2(2x)
∂f∂x=−x(x2+y2+z2)−3/2
∂2f∂x2=−x(−32)(x2+y2+z2)−5/2×
(2x)-(x2+y2+z2)−3/2
∂2f∂x2=3x2(x2+y2+z2)−5/2−(x2+y2+z2)−3/2
Similarly
Z = f(x,y)
∂2f∂y2=3y2(x2+y2+z2)−5/2−(x2+y2+z2)−3/2
∂2f∂z2=3z2(x2+y2+z2)−5/2−(x2+y2+z2)−3/2
∂2f∂x2+∂2f∂y2+∂2f∂z2=3(x2+y2+z2)(x2+y2+z2)−5/2−3(x2+y2+z2)−3/2=0
Method II : Let r2=x2+y2=z2
Differentiating (1) partially w.r.t 'x'
∂∂(r2)=∂∂x(x2)+∂∂x(y2)+∂∂x(z2)
2r∂r∂=2x+0+0
i.e, ∂r∂x=xr
Similarly, ∂r∂y=yrand∂r∂z=zr
Now f=(x2+y2+z2)−1/2=(r2)−1/2=1r
∂f∂x=∂∂x(1r)=−1r2∂r∂x
=−1r2(xr)=−xr3
∂2f∂x2=∂∂x(∂f∂x)=∂∂x[−xr3]
=−⎡⎢
⎢
⎢⎣r3∂∂x(x)−x∂∂x(r3)r6⎤⎥
⎥
⎥⎦
=−⎡⎢⎣r3−x.3r2∂r∂xr6⎤⎥⎦
=−⎡⎢
⎢⎣r3−3r2.x(xr)r6⎤⎥
⎥⎦=−[1r3−3x2r5]
Similarly ∂2f∂y2=−[1r3−3y2r5]
and ∂2f∂z2=−[1r3−3z2r5]
Now ∂2f∂x2+∂2f∂y2+∂2f∂z2=−3r3+3(x2+y2+z2)r5
=−3r3+3r3=0