If f(a+b+1-x)=f(x)∀x, where a and b are fixed positive real numbers, then
1a+b∫abx(f(x)+f(x+1))dx is equal to.
∫a-1b-1f(x)dx
∫a+1b+1f(x+1)dx
∫a-1b-1f(x+1)dx
∫a+1b+1f(x)dx
Explanation for correct Answer:
Step:1: Formation of Equation
f(a+b+1-x)=f(x)putx=1+xf(a+b-x)=f(x+1)I=1a+b∫ab[x(f(x)+f(x+1))]dx..................(i)I=1a+b∫ab[(a+b-x)(f(a+b-x))+f(a+b-x+1)dx]I=1a+b∫ab[(a+b-x)(f(x+1)+f(x))]...........(ii)
Step:2:Adding the formed equation
Adding (i) and (ii),
⇒2I=∫abf(a+b-x+1)dx+∫abf(x)dx
⇒2I=2∫abf(x)dx
⇒I=∫abf(x)dx
put, x=t+1,dx=dt
⇒I=∫a-1b-1f(t+1)dt
⇒I=∫a-1b-1f(x+1)dt
1a+b∫abx(f(x)+f(x+1))dx is equal to ∫a-1b-1f(x+1)dx.
Hence, Option ‘C’ is correct.