If first three terms of (1+ax)n are 1,6x,16x2 respectively, then the value of (18+n)a is
Open in App
Solution
Given (1+ax)n
General term of the expansion is Tr+1=nCr(ax)r
Now, as per given conditions, we get T1=1⇒1=1T2=6x⇒n(ax)=6x⇒a=6n⋯(1)T3=16x2⇒nC2(ax)2=16x2⇒n(n−1)a2=32
Using equation (1), we get 36(n−1)n=32⇒36n−36=32n⇒n=9⇒a=23∴(18+n)a=(27)2/3=9