If foot of the perpendicular of P(2,-3,1) on the line
x+12=y−33=z+2−1is
Q(a,b,c) then find the value of −14(a+b+c)
Given line is x+12=y−33=z+2−1=r...(1)
Point P≡(2,−3,1)
Co-ordinates of foot of the perpendicular on line (1) may be taken as Q≡(2r−1,3r+3,−r−2)
We get direction ratios of PQ=2r−3,3r+6,−r−3
Direction ratios of line segment are 2,3,−1 from (1)
Since PQ perpendicular to AB
∴2(2r−3)+3(3r+6)−1(−r−3)=0
or,14r+15=0
∴r=−1514
∴Q≡(2r−1,3r+3,−r−2)=(−227,−314,−1314)
=(a,b,c) given
⇒−14(a+b+c)=−14(−227+−1314+−1314)=44+3+13=60