Geometrical Representation of Argument and Modulus
If for a comp...
Question
If for a complex number z1 and z2, arg(z1)−arg(z2)=0, then |z1−z2| is equal to
A
|z1|+|z2|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
|z1+z2|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
||z1|−|z2||
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C||z1|−|z2|| We have, |z1−z2|2=|z1|2+|z2|2−2Re(z1¯¯¯¯¯z2) ⇒|z1−z2|2=|z1|2+|z2|2−2Re(|z1|eiargz1|¯¯¯¯¯z2|e−iargz2) ⇒|z1−z2|2=|z1|2+|z2|2−2Re(|z1||z2|ei(argz1−argz2))[∵|¯¯¯z|=|z| |z1−z2|2=|z1|2+|z2|2−2|z1||z2|cos(θ1−θ2) where θ1=arg(z1) and θ2=arg(z2). [∵θ1−θ2=0] ⇒|z1−z2|2=|z1|2+|z2|2−2|z1||z2| =(|z1|−|z2|)2 ⇒|z1−z2|=||z1|−|z2||