If for a matrix A, |A|=6 and adj A=⎡⎢⎣1−24411−1k0⎤⎥⎦ then k is equal to
-1
2
1
0
|adj A|=|A|2=36
⇒ ∣∣ ∣∣1−24411−1k0∣∣ ∣∣=36
⇒ (−1)∣∣∣−2411∣∣∣−k∣∣∣1441∣∣∣=36 [Expanding along R3]
⇒ (−1)(−2−4)−k(1−16)=36
⇒ 6+15k=36⇒k=2
The order of matrix A=⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣2−243109−3−1000500−200−7−1−100−51−1−2000⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ is ___