If for a triangle ABC, ∣∣
∣∣abcbcacab∣∣
∣∣=0, then sin3A+sin3B+sin3C is equal to:
A
sinA+sinB+sinC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3sinAsinBsinC
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
sin3A+sin3B+sin3C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sin3Asin3Bsin3C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B3sinAsinBsinC ∣∣
∣∣abcbcacab∣∣
∣∣=0⇒(a+b+c)∣∣
∣∣111bcacab∣∣
∣∣=0(usingR1=R1+R2+R3) ⇒(a+b+c)∣∣
∣∣001b−cc−aac−aa−bb∣∣
∣∣=0 (using C1=C1−C2,C2=C2−C3) ⇒(a+b+c)[(b−c)(a−b)−(c−a)2]=0 ⇒(a+b+c)[ab−b2−ac−+bc−c2−a2+2ac]=0 ⇒−(a3+b3+c3−3abc)=0 ⇒(a3+b3+c3−3abc)=0 . Now using the sine rule asinA=bsinB=csinC=k, we get k3(sin3A+sin3B+sin3C−3sinAsinBsinC)=0 ⇒sin3A+sin3B+sin3C=3sinAsinBsinC