If for non-zero x, af(x)+bf(1x)=1x,−5, where a≠b, then find f(x).
We have,
af(x)+bf(1x)=1x−5……(i)
⇒af(1x)+bf(x)=11x−5
=x−5……(ii)
⇒af(1x)+bf(x)=x−5
Adding equation (i) and (ii), we get
af(x)+bf(x)+bf(1x)+af(1x)=1x−5+x−5
⇒(a+b)f(x)+f(1x)(a+b)=1x+x−10
⇒f(x)+f(1x)=1a+b[1x+x−10]……(iii)
Subtracting equation (ii) from equation (i), we get
af(x)−bf(x)+bf(1x)−af(1x)=1x−5−x+5
⇒(a−b)f(x)−f(1x)(a−b)=1x−x
⇒f(x)−f(1x)=1a−b[1x−x]
Adding equation (iii) and (iv), we get
2f(x)=1a+b[1x+x−10]+1a−b[1x−x]
⇒2f(x)=(a−b)[1x+x−10]+(a+b)[1x−x](a+b)(a−b)
⇒2f(x)
=ax+ax−10a−bx−bx+10b+ax−ax+bx−bxa2−b2
⇒2f(x)=2ax−10a+10b−2bxa2−b2
⇒2f(x)
=1a2−b2×12[2ax−10a+10b−2bx]
=1a2−b2[ax−5a+5b−bx]
=1a2−b2[ax−bx−5(a−b)]