wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If for non-zero x, af(x)+bf(1x)=1x,5, where ab, then find f(x).

Open in App
Solution

We have,
af(x)+bf(1x)=1x5(i)
af(1x)+bf(x)=11x5
=x5(ii)
af(1x)+bf(x)=x5
Adding equation (i) and (ii), we get
af(x)+bf(x)+bf(1x)+af(1x)=1x5+x5
(a+b)f(x)+f(1x)(a+b)=1x+x10
f(x)+f(1x)=1a+b[1x+x10](iii)
Subtracting equation (ii) from equation (i), we get
af(x)bf(x)+bf(1x)af(1x)=1x5x+5
(ab)f(x)f(1x)(ab)=1xx
f(x)f(1x)=1ab[1xx]
Adding equation (iii) and (iv), we get
2f(x)=1a+b[1x+x10]+1ab[1xx]
2f(x)=(ab)[1x+x10]+(a+b)[1xx](a+b)(ab)
2f(x)
=ax+ax10abxbx+10b+axax+bxbxa2b2
2f(x)=2ax10a+10b2bxa2b2
2f(x)
=1a2b2×12[2ax10a+10b2bx]
=1a2b2[ax5a+5bbx]
=1a2b2[axbx5(ab)]


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Tips for Choosing Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon