If for non-zero x, af(x)+bf(1x)=1x−5, where a≠b, find f(x).
We have, af(x)+bf(1x)=1x−5 . . . (i)
x is replace by 1x, we get
af(1x)+bf(x)=x−5 . . . . (ii)
Multiply by a in Eq. (i), we get
a2f(x)+abf(1x)=a(1x−5) . . . (iii)
Multiply by b in Eq. (ii), we get
abf(1x)+b2f(x)=b(x−5) . . . (iv)
On subtracting Eq. (iv) from Eq. (iii), we get
(a2−b2) f(x)=a(1x−5)−b(x−5)
∴ f(x)=1a2−b2[ax−5a−bx+5b]