If for some real number a, limx→0sin 2x+a sin xx3 exists then the limit is equal to
−1
limx→0sin 2x+a sin xx3=limx→02 cos 2x+a cos x3x2 [L'Hospital's Rule]
To make it (00) form, 2cos2x+acosx must be equal to zero at x=0
⇒2+a=0⇒a=−2
⇒limx→0−4 sin 2x+2 sin x6x=limx→0[−43sin 2x2x+13 sin xx]
=−43+13=−1