If for the complex numbers z1,z2,.....,zn, |z1|=|z2|=.....=|zn|=1. Then prove that |¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1+z2+.....+zn|=∣∣∣1z1+1z2+......+1zn∣∣∣.
Open in App
Solution
Given, for the complex numbers z1,z2,.....,zn, |z1|=|z2|=.....=|zn|=1.
As it is given |z1|=1 then gives z1.¯¯¯¯¯z1=1 or ¯¯¯¯¯z1=1z1. Same things happens for the rest complex number.