If for x∈0,π2,log10sinx+log10cosx=-1 and log10(sinx+cosx)=12(log10n-1),n>0, then the value of n is equal to:
16
20
12
9
Explanation of the given option:
Step 1: Apply the formlula loga+logb=log(a×b)
Given equation, log10sinx+log10cosx=-1
∴log10sinx+log10cosx=-1⇒log10(sinx.cosx)=-1⇒sinx.cosx=10-1⇒sinx.cosx=110
Given equation: log10(sinx+cosx)=12(log10n-1),n>0
∴log10sinx+cosx=12(log10n-1)=12(log10n-log1010)∵log10=1∴log10(sinx+cosx)=12log10n10∵logax-logay=logaxy⇒sinx+cosx=1012log10n10
Step 2: Squaring on both sides,
∴sin2x+cos2x+2sinxcosx=10log10n10⇒1+210=n10∵sin2x+cos2x=1andsinx.cosx=110,andalogak=k⇒10+210=n10⇒1210=n10⇒n=12
Hence, the correct answer is an option (C).