If for x∈0,14, the derivative of tan-16xx1-9x3 is x.g(x), then g(x) equals
3xx1-9x3
3x1-9x3
31+9x3
91+9x3
Explanation for the correct answer:
Step 1: Finding the derivative
Let, y=tan-16xx1-9x3
Differentiate the given function with respect to x
dydx=11+36x2.x(1-9x3)2.(1-9x3)6×32x12(6x3227x2)(1-9x3)2∵ddx(tan-1x)=11+x2=1-9x321-9x32+36x3.1-9x39x126x.x(27x2)(1-9x3)2∵x12=x,x32=xx=x(9(1-9x3)+6x(27x2)(1-9x3)2+36x3=x(9-81x3+162x3)1+81x6-18x3+36x3=x(9+81x3)1+81x6+18x3
Step 2: Equating the derivative to x.g(x)
∴g(x)×x=x(9+81x3)1+81x6+18x3⇒gx=9(1+9x3)(1+9x3)2⇒g(x)=9(1+9x3)
Hence, the correct answer is an option (D).