The correct option is D C1+C4+C7+C10+C13+C16=37
(1+z2+z4)8=C0+C1z2+C2z4+…+C16z32 …[1]
Putting z=i, where i=√−1,
(1−1+1)8=C0−C1+C2−C3+…+C16
or, C0−C1+C2−C3+…+C16=1
Also, putting z=ω, where ω is cube root of unity
(1+ω2+ω4)8=C0+C1ω2+C2ω4+…+C16ω32
⇒C0+C1ω2+C2ω+…+C16ω2=0 …[2]
Putting z=ω2,
(1+ω4+ω8)8=C0+C1ω4+C2ω8+…+C16ω64
⇒C0+C1ω+C2ω2+…+C16ω=0 …[3]
Putting z=1,
38=C0+C1+C2+…+C16 …[4]
Adding [2], [3], [4], we get
3(C0+C3+C6+…+C15)=38
⇒C0+C3+C6+…+C15=37
Similarly, first multiplying [1] by z and then putting 1, ω, ω2 and adding, we get
C1+C4+C7+C10+C13+C16=37
Multiplying [1] by z2 and then putting 1, ω, ω2 and adding, we get
C2+C5+C8+C11+C14=37