If ∀ n ∈ N,(1+x+x2)n=a0+a1x+a2x2+......+a2nx2n where a1a2.....a2n∈Z
and a20−a21+a22−a23+.....+a22n=kan then k=
1
(1+x+x2)n=a0+a1x+a2x2+......+a2nx2n
Replacing by −1x we have
(1−1x+1x2)n=a0−a1x+a2x2+.......+a2nx2n
Now a20−a21−a33+.......+a22n=term independent of x in (1+x+x2)n(1−1x+1x2)n
=term independent of x in (1+x+x2)n(1−x+x2x2)n
=term independent of x in (1+x2+x4)nx2n
=term independent of x2n in (1+x2+x4)n
=term independent of xn in (1+x+x2)n
=an