The correct option is
C 2, 4, 6, 8
Let the four numbers in A.P be a−3d,a−d,a+d,a+3d. ---- (1)
Given that Sum of the terms =20.
=(a−3d)+(a−d)+(a+d)+(a+3d)=20
4a=20
a=5. ---- (2)
Given that sum of squares of the term =120.
=(a−3d)2+(a−d)2+(a+d)2+(a+3d)2=120
=(a2+9d2−6ad)+(a2+d2−2ad)+(a2+d2+2ad)+(a2+9d2+6ad)=120
=4a2+20d2=120
Substitute a=5 from (2) .
4(5)2+20d2=120
100+20d2=120
20d2=20
d=±1
Since AP cannot be negative.
Substitute a=5 and d=1 in (1), we get
a−3d,a−d,a+d,a+3d=2,4,6,8.