Given 1a,1b,1careinAP
(i)
1b−1a=1c−1b
(a−b)ab=(b−c)bc
(a−b)a=(b−c)c
ac−bc=ab−ac
ac+ac=ab+bc
2ac=ab+bc
2ca=ab+bc
Thusbc,caandabareinAP
(ii)
We know that if, b(c + a) – a(b + c) = c(a + b) – b(c + a)
Consider LHS: b(c + a) – a(b + c)
Upon simplification we get,
b(c + a) – a(b + c) = bc + ba – ab – ac
= c (b - a)
Now, c(a + b) – b(c + a) = ca + cb – bc – ba
= a (c-b)
We know, 1a,1b,1careinAP
So, 1b−1a=1c−1b
Or c(b - a) = a(c - b)
Hence, given terms are in AP.