If 1a,1b,1c are in A.P., prove that:
(i) b+ca,c+ab,a+bc are in A.P.
(ii) a(b+c),b(c+a),c(a+b) are in A.P.
Given: 1a,1b,1c are in A.P.
∴2b=1a+1c⇒2ac=ab+bc……(i)
(i) To prove: b+ca,c+ab,a+bc are in A.P.
2(a+cb)=b+ca+a+bc⇒2ac(a+c)=bc(b+c)+ab(a+b)
LHS: 2ac(a+c)
=(ab+bc)(a+c) [From (i)]
=a2b+2abc+bc2
RHS: bc(b+c)+ab(a+c)
=b2c+bc2+a2b+ab2=b2c+ab2+bc2+a2b=b(bc+ab)+bc2+a2b=2abc+bc2+a2b
=a2b+2abc+bc2 [From (i)]
∴ LHS = RHS
Hence proved.
(ii) a(b+c),b(c+a),c(a+b) are in A.P.
if b(c+a)−a(b+c)=c(a+b)−b(c+a)
LHS =b(c+a)−a(b+c)
=bc+ab−ab−ac=c(b−a)……(i)
RHS =c(a+b)−b(c+a)=ca+cb−bc−ba=a(c−b)ldots…(ii)
and 1a,1b,1c are in A.P.
∴1a−1b=1b−1c
Or c(b−a)=a(c−b)……(iii)
From (i), (ii) and (iii)
a(b+c),b(c+a),c(a+b) are in A.P.