If (2n)!3!(2n−3)!andn!2!(n−2)! are in the ratio 44:3, find n.
We have,
(2n)!3!(2n−3)!n!2!(n−2)!=443⇒(2n)!×2!(n−2)!3!(2n−3)!×n!=443⇒(2n)(2n−1)(2n−2)(2n−3)!×2!(n−2)!3×2!(2n−3)!×n(n−1)(n−2)!=443⇒2n(2n−1)(2n−2)3n(n−1)=443⇒2(2n−1)×2(n−1)3(n−1)=443⇒4(2n−1)=44⇒2n−1=11⇒2n=12⇒n=6∴n=6