If (2n)!(3 !)×(2n−3)!:n !(2 !)×(n−2)!=44:3, find the value of n.
(2n)(2n−1)(2n−2)×(2n−3)!6×(2n−3)!×2×(n−2)!n(n−1)×(n−2)!=443
⇒8×n×(n−1)×(2n−1)6×n×(n−1)=443⇒2n−1=443×68⇒2n−1=11⇒n=6.
If (2n)!3!(2n−3)!andn!2!(n−2)! are in the ratio 44:3, find n.