Question 122
If 5m×53×5−25−5=512, then find m.
Using law of exponents, am×an=(a)m+n and a−m=1am
Given, 5m×53×5−25−5=512
⇒ 5m×53×5−2×55=512 ⇒5m×5[3+(−2)+5]=512 ⇒5m×56=512 ⇒5m+6=512 [∵am×an=am+n]
Since the base are same on both sides we can equate the exponents.
⇒m+6=12
⇒m=6