If a+bxa−bx=b+cxb−cx=c+dxc−dx(x≠0), then show that a, b, c and d are in G.P.
Given :
a+bxa−bx=b+cxb−cx=c+dxc−dx
Now, a+bxa−bx=b+cxb−cx
Applying componendo and dividendo
⇒(a+bx)+(a−bx)(a+bx)−(a−bx)=(b+cx)+(b−cx)(b+cx)−(b−cx)
⇒2a2bx=2b2cx
⇒ab=bc
Similiarly,
((b+cx)+(b−cx)(b+cx)−(b−cx))=((c+dx)+(c−dx)(c+dx)−(c−dx))
⇒bc=cd.
Therefore, a, b, c and d are in G.P.