wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a+bxabx=b+cxbcx=c+dxcdx(x0), then show that a, b, c and d are in G.P.

Open in App
Solution

Given :

a+bxabx=b+cxbcx=c+dxcdx

Now, a+bxabx=b+cxbcx

Applying componendo and dividendo

(a+bx)+(abx)(a+bx)(abx)=(b+cx)+(bcx)(b+cx)(bcx)

2a2bx=2b2cx

ab=bc

Similiarly,

((b+cx)+(bcx)(b+cx)(bcx))=((c+dx)+(cdx)(c+dx)(cdx))

bc=cd.

Therefore, a, b, c and d are in G.P.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon