If a√bc−2=√bc+√cb, where a,b,c>0 then the family of line √ax+√by+√c=0 passes through a fixed point given by
(−1,1)
a√bc−2=√bc+√cb …(1)
a,b,c>0
√ax+√by+√c=0 …(2)
By (1)
⇒a=2√bc+b+c
⇒a=(√b+√c)2
⇒(√a−√b−√c)(√a+√b+√c)=0
⇒√a−√b−√c=0 …(3)
since {√a+√b+√c≠0∵a,b,c>0
Comapre (2) & (3)
⇒x=−1, y=1
So, the fixed point is (−1,1)