If b+ca,c+ab,a+bc are in A.P., prove that :
(i) 1a,1b,1c are in A.P.
(ii) bc, ca, ab are in A.P.
(i) 1a,1b,1c are in A.P.
Since b+ca,c+ab,a+bc are in A.P., we have:
c+ab−b+ca=a+bc−c+ab⇒ac+a2−b2−bcab=ab+b2−c2−acbc⇒(a+b)(a−b)+c(a−b)ab=(b+c)(b−c)+a(b−c)bc⇒(a−b)(a+b+c)ab=(b−c)(a+b+c)bc⇒(a−b)ab=(b−c)bc⇒1b−1a=1c−1b
Hence, 1a,1b,1c are in A.P.
(ii) bc, ca, ab are in A.P.
1b−1a=1c−1b⇒(a−b)ab=(b−c)bc⇒(a−b)a=(b−c)c⇒(a−b)c=a(b−c)⇒ac−bc=ab−ac
Hence, bc, ca, ab are in A.P.