If cos(A−B)cos(A+B)+cos(C+D)cos(C−D)=0, prove that tanA tanB tanC tanD=−1
We have,
cos(A−B)cos(A+B)+cos(C+D)cos(C−D)=0,⇒cos(A−B)cos(A+B)+cos(C+D)cos(C−D) …(i)
Now,
cos(A−B)cos(A+B)=−cos(C+D)cos(C−D)⇒cos(A−B)cos(A+B)+1=−cos(C+D)cos(C−D)+1⇒cos(A−B)+cos(A+B)cos(A+B)+cos(C+D)−cos(C−D)cos(C−D)⇒cos(A+B)+cos(A−B)cos(A+B)+cos(C+D)−cos(C−D)cos(C−D) (ii)
Again,
cos(A−B)cos(A+B)=−[cos(C+D)−cos(C−D)]cos(C−D) …(ii)
[By equation(i)]
⇒cos(A−B)cos(A+B)−1=−cos(C+D)cos(C−D)−1⇒cos(A−B)−cos(A+B)cos(A+B)=−[cos(C+D)+cos(C−D)]cos(C−D)⇒cos(A+B)−cos(A−B)cos(A+B)=cos(C+D)+cos(C−D)cos(C−D) (iii)
Dividing equation (ii) by equation (iii), we get
cos(A+B)+cos(A−B)cos(A+B)−cos(A−B)=−[cos(C+D)−cos(C−D)]cos(C+D)+cos(C−D)⇒2cos{A+B+A−B2}cos{A+B−A+B2}2sin{A+B+A−B2}sin{A+B−A+B2}
=−2sin[{C+D+C−D2}sin{C+D−C+D2}]2cos{C+D+C−D2}cos{C+D−C+D2}⇒cosA cosB−sinA sinB=sinC sinD−cosC cosD⇒1tanA tanB=tanC tanD⇒−1=tanA tanB tanC tanD∴ tanA tanB tanC tanD=−1