wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos(AB)cos(A+B)+cos(C+D)cos(CD)=0, prove that tanA tanB tanC tanD=1

Open in App
Solution

We have,
cos(AB)cos(A+B)+cos(C+D)cos(CD)=0,cos(AB)cos(A+B)+cos(C+D)cos(CD) (i)
Now,
cos(AB)cos(A+B)=cos(C+D)cos(CD)cos(AB)cos(A+B)+1=cos(C+D)cos(CD)+1cos(AB)+cos(A+B)cos(A+B)+cos(C+D)cos(CD)cos(CD)cos(A+B)+cos(AB)cos(A+B)+cos(C+D)cos(CD)cos(CD) (ii)
Again,
cos(AB)cos(A+B)=[cos(C+D)cos(CD)]cos(CD) (ii)
[By equation(i)]
cos(AB)cos(A+B)1=cos(C+D)cos(CD)1cos(AB)cos(A+B)cos(A+B)=[cos(C+D)+cos(CD)]cos(CD)cos(A+B)cos(AB)cos(A+B)=cos(C+D)+cos(CD)cos(CD) (iii)
Dividing equation (ii) by equation (iii), we get
cos(A+B)+cos(AB)cos(A+B)cos(AB)=[cos(C+D)cos(CD)]cos(C+D)+cos(CD)2cos{A+B+AB2}cos{A+BA+B2}2sin{A+B+AB2}sin{A+BA+B2}

=2sin[{C+D+CD2}sin{C+DC+D2}]2cos{C+D+CD2}cos{C+DC+D2}cosA cosBsinA sinB=sinC sinDcosC cosD1tanA tanB=tanC tanD1=tanA tanB tanC tanD tanA tanB tanC tanD=1


flag
Suggest Corrections
thumbs-up
38
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon