If dydx=e−2y and y=0 when x=5, then find the value of x when y=3.
Given that, dydx=e−2y⇒dye−2y=dx
⇒∫e2ydy=∫dx⇒e2y2=x+C ...(i)
when x=5 and y=0, then substituting these values in Eq. (i), we get
e02=5+C⇒12=5+C⇒C=12−5=−92
Eq. (i) becomes e2y=2x−9
When y=3, then e6=2x−9⇒2x=e6+9∴x=(e6+9)2