wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If dydx=xyx2+y2,y(1)=1; then a value of x satisfying y(x)=e is


A

3e

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

123e

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

2e

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

e2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

3e


Explanation for the correct answer:

Step 1: Differentiating with respect to dx,

Given, dydx=xyx2+y2...(1)

Differentiating with respect to dx,

y=vxdydx=v×1+x×dvdxddx(uv)=udvdx+vdudx

dydx=v+xdvdx...(2)

Step 2: Equate the equation (1) and (2)

v+xdvdx=vx2x2+v2x2y=vxvdx+xdvdx=vx2x2+v2x2xdvdx=vx2x2+v2x2-vxdvdx=vx2-vx2-v3x2x2+v2x2xdvdx=-v3x2x2+v2x2dv-v3x2=dxx(x2+v2x2)dv-v3=x2dxx3(1+v2)dv-v3=dxx(1+v2)(1+v2)-v3dv=dxx

Step 3: Integrating on both sides,

1+v2-v3dv=dxx-1v3-1vdv=dxx-121v2+lnv=-lnx+c-x22y2=-lny+cv=yx

when x=1 , y=1 then,

-12(1)=ln(1)+c-12=c-x22y2=-lny-12x2=y2(1+2lny)

At,

y(x)=ex2=e2(3)x=±3ex=3e

Hence, the correct answer is option (A).


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon