If log2(4x2āxā1)log2(x2+1)>1 then x lies in the interval
log2(4x2−x−1)−log2(x2+1)>0⇒4x2−x−1x2+1>1⇒3x2−x−2>0⇒(3x+2)(x−1)>0⇒x<−2/3 or x>1
If log2(4x2−x−1)log2(x2+1)>1 then x lies in the interval