If log xb−c=log yc−a=log za−b, then which of the following is true
xyz=1
xaybzc=1
xb+cyc+aza+b=1
xyz=xaybzc
log xb−c=log yc−a=log za−b=k(say)⇒log x=k(b−c),log y=k(c−a),log z=k(a−b)⇒x=ek(b−c),y=ek(c−a),z=ek(a−b)∴xyz=ek(b−c)+k(c−a)+k(a−b)=e0=1xaybzc=ek(b−c)a+k(c−a)b+k(a−b)c=e0=1=xyzxb+cyc+aza+b=ek(b2−c2)+k(c2−a2)+k(a2−b2)=e0=1.
So, All options are correct.