If mn=tan Atan B, find the value of m+nm−n is
m+nm−n=tan A+tanBtan A−tan B. This is definitely not equal to tan (A+B) or tan (A-B). Other two options are in terms of sin(A∓B)or cos (A∓B)
We known the terms in sin (A∓B) and cos (A∓B)are sin ~, cos A, and cos B. So we will convert tanA into sin Acos A and tanB to sin Bcos B
⇒m+nm−n=sinAcosB+sinBcosAsinAcosB−sinBcosA=sin(A+B)sin(A−B)
Key steps / concepts :(1) tanA=sinAcosA
tanB=sinBcosB
(2)Formula of sin (A∓B)