If mn=tanAtanB , find the value of m+nm−n
m+nm−n=tanA+tanBtanA−tanB This is I definitely not equal to tan (A+B) or tan (A-B). Other two options are in terms of sin (A± B) or cos (A± B)
We know the terms in sin (A± B) and cos (A ± B) are sinA, cosA, cosA and cosB. So we will
convert tanA into sinAcosA and tanB to sinBcosB
⇒ m+nm−n = sinAcosB+sinBcosAsinAcosB−sinBcosA
= sin(A+B)sin(A−B)
Key steps/concepts: (1) tanA = sinAcosA
(2) Formula of sin (A±B)