If π2<α<3π2 then the modulus argument form (1+cos2α)+isin2α is :
A
2cosα[cos(π+α)+isin(π+α)]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2cosα[cosα+isinα]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2cosα[cos(−α)+isin(−α)]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−2cosα[cos(π−α)+isin(π−α)]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2cosα[cos(π+α)+isin(π+α)] z=1+cos2α+isin2α |z|=√(1+cos2α)2+(sin22α) =√1+cos22α+2cos2α+sin22α =√1+1+2cos2α =√2(1+cos2α) =√2(1+2cos2α−1) =2cosα argz=∅=tan−1(sin2α1+cos2α)=tan−1(sin2α2cos2α) =tan−12sinαcosα2cos2α =tan−1tanα =(α+π) → As α lies in 2nd and 3rd quadrant,
∴ The modulus argument form of the given complex number is: