If −π2<x<π2 and the sum to infinite number of terms of the series cosx+23cos x sin2 x+49cos x sin4 x+..... is finite, then x lies in the set
−π2< x < π2
Solution : cosx+23cos x sin2 x+49cos x sin4 x+..... is finite
cos x1−23sin2x
3Cosx3−2sin2x
3cosx1+2(1−sin2x)
3cosx1+cos2x
−1<23sin2x<1
−3< 2sin2x< 3
−32<sin2x<32
0<sin2x<32
We know that for every value of x we have 0<sin2x<1
Since, −π2<x<π2
Then x can take all the values in the interval -
−π2<x<π2
∴ −π2< x < π2