If sin4Aa+cos4Ab=1a+b, then the value of sin8Aa3+cos8Ab3 is equal to
(a) It is given that sin4Aa+cos4Ab=1a+b
⇒(1−cos2A)24a+(1+cos2A)24b=1a+b ⇒b(a+b)(1−2cos2A+cos22A)+a(a+b)(1+2cos2A+cos22A)=4ab ⇒{b(a+b)+a(a+b)}cos22A+2(a+b)(a−b)cos2A
If one root of the equation ax2+bx+c=0 the square of the other, then a (c−b)3=cX, where X is