wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin4θa+cos4θb=1a+b, prove thatsin8θa8+cos8θb8=1a+b8

Open in App
Solution

We have

sin4θa+cos4θb=1a+b(a+b)(sin4θa+cos4θb)=1(a+b)(sin4θa+cos4θb)(sin2θ+cos2θ)2(a+ba)sin4θ+(ab+1)cos4θ=sin4θ+cos4θ+2sin2θcos2θbasin4θ+abcos4θ2sin2θcos2θ=0(basin2θabcos2θ)2=0

(basin2θabcos2θ)2=0basin2θabcos2θ=0basin2θ=abcos2θsin2θcos2θ=absin2θa=cos2θb

Using ratio and proportion,sin2θa=cos2θb=sin2θ+cos2θa+b=1a+b
sin2θ=aa+band cos2θ=ba+bSo,sin3θa3+cos3θb3=(sin2θ)41a3+(cos2θ)41b3=1a3(aa+b)4+1b3(b(a+b))4=1(a+b)3


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon