If sin4θa+cos4θb=1a+b′, prove thatsin8θa8+cos8θb8=1a+b8
We have
sin4θa+cos4θb=1a+b⇒(a+b)(sin4θa+cos4θb)=1⇒(a+b)(sin4θa+cos4θb)(sin2θ+cos2θ)2⇒(a+ba)sin4θ+(ab+1)cos4θ=sin4θ+cos4θ+2sin2θcos2θ⇒basin4θ+abcos4θ−2sin2θcos2θ=0⇒(√basin2θ−√abcos2θ)2=0
⇒(√basin2θ−√abcos2θ)2=0⇒√basin2θ−√abcos2θ=0⇒√basin2θ=√abcos2θ⇒sin2θcos2θ=ab⇒sin2θa=cos2θb
Using ratio and proportion,sin2θa=cos2θb=sin2θ+cos2θa+b=1a+b
⇒sin2θ=aa+band cos2θ=ba+bSo,sin3θa3+cos3θb3=(sin2θ)41a3+(cos2θ)41b3=1a3(aa+b)4+1b3(b(a+b))4=1(a+b)3