If sin4x2+cos4x3=15, then
sin2x=25
cos2x=35
sin6x4+cos6x4=1
None
Multiplying the given relation by 4 4sin4x2+4 cos4x3=45⇒(1−cos 2x)22+(1+cos 2x)23=45⇒cos 2x=15∴2 cos2x=65and2 sin2x=45 cos2x=35 and sin2x=25
If 5 cos22x+4(cos2x+sin4x+cos6x+sin6x)=8, then