If sin4x2+cos4x3=15 , prove that tan2x=23
We have, sin4x2+cos4x3=15
⇒3sin4x+2cos4x6=15
⇒15sin4x+10cos4x=6
On dividing both sides by cos4x, we get
⇒15tan4x+10=6sec4x
⇒15tan4x+10=6(1+tan2x)2[∵sec2θ−tan2θ=1]
⇒15tan4x+10=6+12tan2x+6tan4x
⇒9tan4x−12tan2x+4=0
⇒(3tan2x−2)2=0
∴tan2x=23 Hence proved.