If √1+cosx+√1−cosx√1+cosx=√1−cosx=cot(a+x2),xϵ(π,2π) then a___
π4
√1+cosx=√2cos2x2=√2|cosx2|√1−cosx=√2sin2x2=√2|sinx2|π<x<2π⇒π2<x2<π.∴√1+cosx=−cosx2√1−cosx=sinx2
∴√1+cosx+√1−cosx√1+cosx−√1−cosx=−cosx2+sinx2−cosx2−sinπ2⇒−1tanx2−1−tanx2=1−tanx21+tanx2=tan(π4−x2)=cot(π2−(π4−x2))=cot(π4+x2)